
www.manaraa.com

Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2014

Hybrid drive design: an economics - workload
based approach
Joy Shukla
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Computer Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Shukla, Joy, "Hybrid drive design: an economics - workload based approach" (2014). Graduate Theses and Dissertations. 14297.
https://lib.dr.iastate.edu/etd/14297

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/14297?utm_source=lib.dr.iastate.edu%2Fetd%2F14297&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu

www.manaraa.com

Hybrid drive design: An economics - workload based approach

by

Joy Shukla

A thesis submitted to the graduate faculty

in partial ful�llment of the requirements for the degree of

MASTER OF SCIENCE

Major: Computer Engineering

Program of Study Committee:

Arun K. Somani, Major Professor

Phillip Jones

Govindarasu Manimaran

Iowa State University

Ames, Iowa

2014

www.manaraa.com

ii

DEDICATION

I would like to thank my friends and family for their loving guidance and �nancial assistance

during the writing of this work.

www.manaraa.com

iii

TABLE OF CONTENTS

LIST OF TABLES . v

LIST OF FIGURES . vi

LIST OF ALGORITHMS . vii

ACKNOWLEDGEMENTS . viii

ABSTRACT . ix

CHAPTER 1. INTRODUCTION . 1

CHAPTER 2. RELATED WORK . 5

2.1 Our Approach . 6

CHAPTER 3. DETERMINING SSD SIZE . 8

3.1 Spatial Locality Analysis . 8

3.2 Data Driven Design . 10

3.2.1 Gathering Data For The Analysis . 10

3.2.2 Analysis . 12

3.2.3 Spacial Locality Analysis Results . 13

CHAPTER 4. REPLACEMENT STRATEGIES 17

4.1 Interval Least Frequently Used (LFU) Replacement 17

4.2 History based Interval LFU Replacement . 19

4.3 Conservative Interval LFU Replacement . 19

4.4 Conservative History based Interval LFU Replacemen 20

4.5 Replacement Strategies Simulation Results . 24

www.manaraa.com

iv

CHAPTER 5. SUMMARY AND CONCLUSION 28

BIBLIOGRAPHY . 29

www.manaraa.com

v

LIST OF TABLES

Table 4.1 Replacement Strategies Simulation Results Table 24

www.manaraa.com

vi

LIST OF FIGURES

Figure 1.1 Price and Performance di�erence between traditional HDD and SSD enm

(2014) . 3

Figure 1.2 Using SSD as Cache enm (2014) . 3

Figure 2.1 Replacement in Host . 6

Figure 2.2 Replacement in Disk . 7

Figure 3.1 Cost-Latency vs SSD Size . 9

Figure 3.2 Sample Spatial Analysis . 11

Figure 3.3 Sample Spatial Analysis of Bytes Accessed 12

Figure 3.4 Spacial Locality Analysis Results - RadiusBackEndSQLServer 14

Figure 3.5 Spacial Locality Analysis Results - MSNStorageCFS 15

Figure 3.6 Spacial Locality Analysis Results - DisplayAdsPayload 16

Figure 4.1 Replacement Strategies Simulation Results-DisplayAdsPayLoad 22

Figure 4.2 Conservative LFU Policy-DisplayPayload 23

Figure 4.3 Conservative History based LFU Policy-DisplayPayload 25

Figure 4.4 Comparison of all four policies - DisplayAdsPayload 26

Figure 4.5 Comparison of all four policies - RadiusBackEndSQLServer 26

www.manaraa.com

vii

LIST OF ALGORITHMS

1 Spatial Locality Analysis: gathering data . 11

2 Spatial Locality Analysis: Analyze . 11

3 Interval LFU Replacement . 18

4 History based Interval LFU Replacement . 20

5 Write Conservative Interval LFU Replacement 21

6 Conservative History based Interval LFU Replacement 21

www.manaraa.com

viii

ACKNOWLEDGEMENTS

I would like to take this opportunity to express my thanks to those who helped me with

various aspects of conducting research and the writing of this thesis.

www.manaraa.com

ix

ABSTRACT

Broader availability of solid state storage devices (SSD) enables an opportunity to improve

the performance of the storage architectures. However, it not clear how exactly this development

should proceed in terms of achieving greater cost-performance balance. Designers will bene�t

from a data-driven approach to understand how much SSD they should invest in to realize the

most cost e�ective system.

This paper presents an analysis of actual workloads to deduce and derive guidance for an

optimal investment strategy to balance the solid state and hard disk drive (HDD) to achieve

the best cost and performance trade-o�s. We show that while it is possible to determine this

balance, it is heavily application dependent. For the workloads we studied, under certain

assumptions, the preferred proportion of SSD varies from 8% to 60% for an 80% improvement

in I/O performance (measured in terms of hits in SSD) compared to totally magnetic disks.

Further, we also propose three replacement strategies to keep the most accessed data in

SSD. This replacement is determined using the past usage data. The goal is to make the best

use of the available SSD, while minimizing the number of replacements. Our Simulation results

shows that the best of our strategies provide 60% to 90% performance improvement compared

to totally HDD across di�erent workloads.

www.manaraa.com

1

CHAPTER 1. INTRODUCTION

Early civilizations recognized the importance of permanent storage of knowledge possessed

by them to be passed on to future generations. Human communication has evolved from cave

paintings to global information system that is in e�ect today. The digital universe is large and

by 2020 will have as many bits as there are stars in our physical universe. With this rapid

expansion comes a dilemma of storage of this abundant information.

Since the �rst demonstration of the Cathode Ray Tube (CRT) in 1948 that allowed volatile

storage of data, the industry has evolved and has seen a range of devices Piramanayagam and

Chong (2011). Tapes and the magnetic disks served need of the time. A desire to improve

the reliability of storage at an a�ordable price continued. Hard Disk Drives (HDD) became

the industry standard for storage device in early 1960s and have been there. Hard disk drives

have in the past 50 years undergone crucial changes to accommodate the advancements in the

computer processing power. In 1956 IBM launched RAMAC, spanning the size of 2 refrigerators

and weighing almost a ton. It had an areal density of 2 kilobits/in2 ram (1956).

Today's drives store data in densities as high as 0.25 terabits/in2. This is a whopping 44%

per annum compounded rate of increase in the last 50 years Wood (2009).

Solid State Drives (SSD)- the newer development o�ers bene�ts over the traditional HDDs.

Flash storage devices deliver the performance that can match today's processing powers. The

technology for now is still more expensive and impractical for consumer electronics. We will

use SSD and �ash interchangeably in the paper.

The two types of storage devices can be compared based on following four basic parameters.

a) reliability or durability b) processing speed and one of the most important parameter for the

industry, i.e. c) manufacturing cost and d) environmental impact.

www.manaraa.com

2

(a) Reliability or Durability.

Based on the inherent design on SSDs they are lighter in weight and also more durable than

the traditional HDDs. Also because of them using semiconductors instead of a magnetic �lm

they are stable in magnetic �elds, which is a problem with the HDDs. In addition, owing to

their semiconductor material based design, SSD's are stable in magnetic �eld whereas HDD's

are not. Though SSDs may seem more reliable in the short term perspective but have a �aw that

they can only have a set number of write cycles, beyond which they wear o�. The HDDs can

do many more write cycles compared to SSDs without signi�cantly reducing the performance.

(b) Processing speed.

In the world of computational power the HDDs are the speed bumps. In the last 10 years

the processing power has grown 30 times, whereas the HDDs have just done a meager rise of

30%. One of the biggest limitations of traditional magnetic drive is the high latency. Flash

memory is the secondary storage that competes most closely with traditional magnetic hard

disks. SSD's are typically twice as fast as HDD's Micheloni et al. (2013).

(c) Manufacturing Cost.

The cost of SSDs is a major restriction in using the technology where �ash memory comes

at 3$/GB, HDDs o�er the economical alternative at 30 cents per gigabyte No (2012). Thus this

limits the use of pure SSDs in consumer electronics and help HDDs maintain their position of

the industry standard in storage drives. With technological advances,SSDs will become more

a�ordable, but for now the alternative solution can only be sought in hybrid drives that give us

the opportunity to use the virtues of both at once.

(d) Energy Consumption.

Due to the absence of any moving parts the overall energy consumption of SSDs is less than

HDDs.

www.manaraa.com

3

Figure 1.1: Price and Performance di�erence between traditional HDD and SSD enm (2014)

Figure 1.2: Using SSD as Cache enm (2014)

www.manaraa.com

4

Hybrid Solution and its advantages

The complementary features of the �ash memory and hard disks have motivated several

proposals on hybrid storage devices by combining the disks and �ash memory. If the advantages

of these two technologies could be bridged, high-end processing power can be made accessible

to masses No (2012). To achieve this goal, hybrid drives that blend the speed of SSDs with

the cost e�ciency and storage capacity of HDDs are being developed. Hybrid Drives have two

separate storage spaces, one is a small �ash memory component, and the other is a traditional

disk. Considering the wide range of possibilities that Hybrid Drives create, they can serve as

the catalyst for the industry transition to a sustainable new generation of data storage.

www.manaraa.com

5

CHAPTER 2. RELATED WORK

Hybrid storage is becoming more and more attractive because it can leverage the advantages

from both technologies. There are several existing approaches attempting to better utilize the

memory hierarchy in �ash-based hybrid storage systems.

FaCE (Flash as Cache Extension), a low overhead caching method, uses SSD as an extension

of DRAM bu�er or a cache layer between DRAM and disk Kang et al. (2012). FaCE utilizes

SSD in a FIFO manner to take advantage of the high sequential write performance of SSD.

Additionally FaCE proposes GSC (Group Second Chance) to increase hits on SSD. GSC gives a

valid page second chance before being dequeued from the cache, if the page has been referenced

while staying in the SSD. From this study the crucial observations were, that adding �ash

memory as cache extension is more cost e�ective technique over increasing the size of DRAM

bu�er. The main drawback of these designs is they do not make full use of the storage hierarchy.

All the pages replaced out of main memory will be kept on the �ash no matter whether they

will be reused again

SSDAlloc, another recent study, uses a similar approach to treat SSD as an extension of the

RAM in the system SSDAlloc exposes �ash memory using page-based virtual memory manager

interface Badam and Pai (2011).

Another empirical approach to manage the bu�er in �ash-based hybrid storage systems,

named Hotness Aware Hit (HAT) Lv et al. (2013). HAT utilizes a page reference queue to

maintain the historical access information i.e. hot, warm and cold, and the queue itself is

divided into hot region and warm region. The HAT approach updates the page status and deals

with the page migration in the memory hierarchy according to the current page status and hit

position in the page reference queue.

www.manaraa.com

6

Figure 2.1: Replacement in Host

2.1 Our Approach

Above approaches make replacement decisions in operating system page replacement algo-

rithm.. They propose to make changes the way storage gets handled by the host in the OS.

Also, as these decisions are made at the operating systems level, it increases computation over-

head for hosts. Figure 2.1 shows a typical structure of the hybrid drive where replacement

decision is made at host level. In this arrangement, the host needs to keep track of the meta-

data for replacement. This results into both memory and computational overhead. The DMA

(Direct Memory Access) between SSD and HDD also needs to be controlled by the host for

replacements.

Figure 2.2 shows our approach in which replacement decisions are made in the disk drive

controller. Disk drive controller already maintains meta-data about all the sectors in the drive.

This requires comparatively less overhead to keep meta-data related to replacement policy. Also,

the host side computational overhead is reduced by making replacement decision in the disk

drive controller.

www.manaraa.com

7

Figure 2.2: Replacement in Disk

An advantage of our approach is that the host does not need to know which kind of disk it

is dealing with, whether it is a hybrid disk or a traditional HDD or an SSD.

Our approach proposes to make such decisions related to what data should be kept in SSD

and what data should be kept in HDD in disk drive itself. We propose to make smarter hybrid

disk which monitors access patterns by the host and based on that makes replacement in SSD.

This way host does not need to know what kind of disk it is dealing with, a hybrid disk system,

an HDD or a SSD.

The rest of the paper is organized as follows. Chapter 3 describes our modeling and analysis

for determining the SSD size. Chapter 4 describes proposed replacement policies and analysis

of simulation results. Lastly, we conclude in Chapter 5.

www.manaraa.com

8

CHAPTER 3. DETERMINING SSD SIZE

Hybrid disk drive give a good balance of performance and a�ordability compared to tradi-

tional magnetic drive solution and all SSD solution. But how much SSD and how much HDD

should be there in our hybrid drives will depend on performance requirement and the work-

load. In this section we analyze spatial locality of the workload to help us make decision about

SSD-HDD proportion in hybrid disk drive.

3.1 Spatial Locality Analysis

Spatial locality refers to location of the data accessed. If a particular memory location

is referenced at a particular time, then it is likely that nearby memory locations will also be

referenced in the near future. In this case it is common to attempt to guess the size and shape

of the area around the current reference for which it is worthwhile to prepare faster access.

Such references to nearby memory locations can be grouped as access to a certain block or page

or other granularity of transfer between SSD and HDD. We call that granularity a bank. All

references to any location in a bank can be considered as an access to the corresponding bank.

Our approach is to monitor tra�c on all such logical banks in the disk. We want to �nd

the portion of most busy banks amongst them. Naturally if we move data from those busier

banks to SSD and keep other data in HDD, we will get most performance improvement. As

an example, if for some type of application top 20% of banks handle 90% of total tra�c,

we can conclude that for the application 20% SSD and 80% HDD combination will give 90%

performance improvement over traditional HDD by employing just 20% extra SSD. We do cost

vs performance analysis considering latency as a performance metric.

Cost and performance metric is de�ned as

www.manaraa.com

9

Figure 3.1: Cost-Latency vs SSD Size

Cost = α ∗ SSDsize%+ β ∗HDDsize%

Latency = γ ∗%AccessInSSD + δ ∗%AccessInHDD

Here, α and β are unit cost of SSD and HDD respectively. γ and δ are the latency of SSD

and HDD respectively. Our model calculates ideal AccessInSSD for di�erent proportion of SSD

in the hybrid drive. AccessInHDD will be calculated by below formula

AccessInHDD = TotalAccess−AccessInSSD

We assume that SSD is 10 times costlier than HDD i.e. α = 10 ∗ β. As SSD is typically

twice fast as HDD, we assume γ = δ/2. As we increase SSD proportion in hybrid drive, cost

increases. At the same time, more access will happen in SSD with lower latency ultimately

reducing hybrid drive latency. Plot in Figure 3.1 shows this property. Interestingly, if we keep

increasing SSD proportion, after certain point latency will not reduce although cost will keep

increasing linearly.

www.manaraa.com

10

3.2 Data Driven Design

We conduct analyses on workload traces provided by SNIA(Storage Networking Industry

Association). These traces consist of workload of di�erent applications. Each trace is collected

over a period of a day or two. They capture primarily disk IO events. It gives information about

each IO access like TimeStamp, LBA(Logical Block Access), IOSize, etc. We access these traces

and generate our meta-data for our analysis.

1. We record the accesses to each bank;

2. We sort the banks in descending order of access counts;

3. We plot the percentage of total accesses handled by the top x% banks

For example, consider 4 banks B0, B1, B2 and B3. Let the accesses to each bank after monitoring

complete trace be 100, 250, 50 and 70. We sort these banks as B1, B0, B3 and B2. Now if

we had 25% SSD, we will have only B1 in SSD and other banks in HDD. In this scenario, our

percentage of total access will be 250/(100+250+50+70) = 53.19%. We do similar calculation

for 50% SSD - 74.47%, 75% SSD - 89.36%. We do such analysis in two phases. First we gather

the data and populate it in map data structure. This data is used in second phase for the

analysis. Next, we perform sorting of banks based on above-mentioned tra�c and analyze how

much tra�c is handled by how much percentage of the banks.

3.2.1 Gathering Data For The Analysis

We �rst gather data to implement our approach. Our model counts Reads and Writes in

each banks and put them in a map data structure for easy access for analysis. Algorithm 1

shows how the map data structure was created. After the execution of Algorithm 1 we have

a map object which have BankNumber as the key and AccessCount and AccessBytes as values

for each bank that was accessed during the trace.

www.manaraa.com

11

Algorithm 1 Spatial Locality Analysis: gathering data

Input - Operation Type(Read/Write), Logical Block Address(CurrentLBA), Accessed

Bytes(CurrentAccessBytes)

Output - Bank[] [AccessCount] [AccessBytes]

while end of trace do

Read currentAccess

CurrentBank = FindBank(CurrentLBA)

incr Bank[CurrentBank][AccessCount]

Bank[CurrentBank][AccessBytes]+=CurrentAccessBytes

Next Access

end while

Algorithm 2 Spatial Locality Analysis: Analyze

Input - Bank[] [ReadCount] [WriteCount] [ReadBytes] [WriteBytes]

TopPerc = 1

while TopPerc < 100 do

RunningSum[TopPerc] = Cumulative count of all accesses to the TopPerc% of banks

plot fraction of RunningSum[TopPerc] and total accesses Vs TopPerc

incr TopPerc

end while

Figure 3.2: Sample Spatial Analysis

www.manaraa.com

12

Figure 3.3: Sample Spatial Analysis of Bytes Accessed

3.2.2 Analysis

Next we analyze the generated data. The goal is to analyze how much tra�c is handled by

how much percentage of banks. So we sort the banks based on number of accesses. Banks with

maximum accesses i.e. maximum tra�c stays on the top of the list and least tra�c will be on

the bottom on the list. The idea is to have a complete HDD and keep adding some amount of

SSD in that (removing same amount of HDD from it, i.e. replacing portion of HDD with SSD)

and see how much tra�c can be handled by that proportion of SSD. The tra�c handled by

SSD is the improvement as we can access that data with lower latency compared to an HDD.

As we keep increasing amount of SSD, more portion of tra�c gets handled by SSD resulting in

more improvement.

Figure 3.2 shows a sample spatial analysis done using Algorithm 2 for Development Tools

Release. The plot depicts Y% of tra�c(i.e. access count) is handled by X% of sorted banks.

This analysis is useful in deciding how much SSD portion should a Hybrid disk drive have for

the performance requirement. For example, if certain application have locality characteristic

www.manaraa.com

13

as in the plot on Figure 3.2, then we read from the plot that top 10% of banks handle 86% of

tra�c. If we move most used banks in SSD, we have 10% SSD to handle 86% access requests

with low latency. This analysis provides understanding of the I/O workload to make the right

investment in storage. The sample shows analysis for Read-Write count. Similar analysis can

be done considering no of accessed bytes as well. Figure 3.3 shows such analysis. Instead of

Read-Write counts we do our analysis on Read-Write IOSize. Such analysis can tell how much

data tra�c was handled by how much SSD. We can read from the plot in �gure 3.3 that top

10% of banks handle 82% of data tra�c.

The spatial locality analysis done above is for certain application. It provides us ideas

on how much SSD our hybrid drive should have to get required speed. Practically we will

have di�erent kind of workloads executed on same infrastructure. For that we can do such

individual application analysis and �nd the application which needs most amount of SSD for

its requirement. When application changes or even in same application we need to shu�e data

in SSD to get maximum performance. In the next section we discuss replacement strategies to

be used for such shu�ing.

3.2.3 Spacial Locality Analysis Results

The plots in Figure 3.4 to 3.6 shows the spatial locality results for four di�erent applications.

X-axes shows top %banks and Y-axes shows fraction of access count and fraction of data. A

point (x,y) on the curve in these plots denotes that the top x% banks handle y% of the total ac-

cesses. Therefore, as x tends to 100, y tends to 100. The application RadiusBackEndSQLServer

shows very good spatially local workload. From the plot, 80% improvement in %access count

will require only 13% SSD. Another application DisplayAdsPayload exhibits very low spatially

local workload. Here, 80% improvement in %access count will require 60% SSD. The same way

MSNStorageCFS requires 38% SSD for 80% improvement in access count compared to totally

magnetic disk.

www.manaraa.com

14

(a) % Access Count

(b) % Access Data

Figure 3.4: Spacial Locality Analysis Results - RadiusBackEndSQLServer

www.manaraa.com

15

(a) % Access Count

(b) % Access Data

Figure 3.5: Spacial Locality Analysis Results - MSNStorageCFS

www.manaraa.com

16

(a) % Access Count

(b) % Access Data

Figure 3.6: Spacial Locality Analysis Results - DisplayAdsPayload

www.manaraa.com

17

CHAPTER 4. REPLACEMENT STRATEGIES

The analysis done in Section 3.1 gives understanding of the I/O workload. It can give idea

about how much SSD and how much HDD a hybrid drive storage system should have.The

underlying assumption is the relevant banks need to be present in SSD when they are being

accessed. It is an idealistic situation. If we had some mechanism that can tell which bank will be

accessed in future, we might as well get 100% "improvement". So the above mentioned analysis

is an indicator of a suitable size of SSD. In order to realize the above-stated improvement,

we need to have smart replacement policies. These replacement strategies probabilistically

determine when and what data will reside in SSD and HDD. Although the problem sound

similar to replacement in cache, there are some fundamental di�erences. SSD is non-volatile,

SSD have limited number of writes. Here, we will introduce some replacement strategies and

discuss advantages and disadvantages of each.

4.1 Interval Least Frequently Used (LFU) Replacement

Under a perfect model, SSD will always contain the data that needs to be accessed in the

memory. So we should put data which will be accessed most number of times in SSD to reduce

latency for most accesses. Similar to Cache-DRAM model, in the context of SSD-HDD model,

a 'hit' is said to occur when the data that needs to be accessed lies in SSD. A 'miss' is said to

occur when the data that needs to be accessed does not lie in SSD, so it needs to be accessed

from HDD with higher latency. To improve the performance, we need to have more number

of hits and less number of misses. At the same time, we can not replace data in SSD very

frequently like cache-DRAM because 1) block size is much higher(several pages) so transfer

penalty is high, and 2) SSD has limited number of erase-write cycles. Hence, our objective is

www.manaraa.com

18

to maximize the hits while performing minimum number of replacements.

In Interval LFU, banks are replaced at regular periods or intervals. This is based on the

assumption that banks accessed most in previous interval, will be again accessed most in cur-

rent interval. So based on previous interval's spatial analysis, as discussed in Section 3.1, we

determine the banks that should reside in SSD. Assume that SSD can accomodate x number

of banks, top x banks accessed in ith interval will reside in SSD for (i+1)th interval. Out of

these banks some of them will already be in SSD. So we need to do replacement for those banks

which should be in SSD but are not there in SSD. These replacements happens in background

or in idle time based on on-line data collections. LFU replacement increases number of hits

compared to no replacement which helps increase overall speed. Performance metric for the

replacement policy would be Improvement percentage and total number of replacements. The

main operations of interval LFU replacement is summarized in Algorithm 3.

Improvement =
Hits

TotalAccess
%

Algorithm 3 Interval LFU Replacement

while 1 do

Read currentAccess

B = FindBank(CurrentLBA)

incr AccessCount for Bank[B]

if B is not in SSD then

Load bank B from HDD //miss

else

Load bank B from SSD //hit

end if

if new interval then

Sort Bank[][] in descending order of AccessCount

Make replacements

end if

Next access

end while

www.manaraa.com

19

4.2 History based Interval LFU Replacement

Interval LFU replacement replacement policy base their replacement decisions on a single

interval. History based interval LFU policy attempts to make replacement decision based on

last k intervals compared to a single interval to make more reliable prediction. Intuitively, by

considering last several intervals we can capture the usage pattern. For example, a bank that has

been accessed for last few intervals versus another bank that was accessed in the last interval,

former is more likely to be accessed in the current interval as well. Therefore, we propose a

weighted score as follows. Weighted score for each back gets calculated by below formula.

WeightedScore = Wi ∗AccessCounti

+Wi−1 ∗AccessCounti−1

+Wi−2 ∗AccessCounti−2

Here i denotes an interval and Wi denotes weight for the interval. Also, Wi> Wi-1> Wi-2 so

that recent interval has the most weight. So for every interval, banks will be sorted in the

descending order of WeightedScore. Similar to interval LFU replacement policy, replacements

will be done for the banks which do not already reside in SSD. The main operations of history

based interval LFU replacement is summarized in Algorithm 4.

4.3 Conservative Interval LFU Replacement

Interval LFU replacement relies on a critical assumption that the banks accessed most in

previous interval, will continue to be accessed in the current interval as well. Sometimes this as-

sumption is not true, which incurs wasteful replacements. Because SSD has limited erase-write

cycles, wasteful writes would wear-o� SSD's faster, while not improving performance. Conser-

vative LFU replacement policy attempts to minimize the wasteful replacements while ensuring

minimal performance degradation. Similar to interval LFU policy, replacement contender list is

generated. This replacement contender list consists of banks that are accessed most in previous

interval but was not residing in SSD. We will then keep analyzing subsequent accesses and

www.manaraa.com

20

Algorithm 4 History based Interval LFU Replacement

while 1 do

Read currentAccess

B = FindBank(CurrentLBA)

incr AccessCount for Bank[B]

if B is not in SSD then

Load bank B from HDD //miss

else

Load bank B from SSD //hit

end if

if new interval then

WeightedScore = CalculateWeightedScore(B)

Sort Bank[][] in descending order of WeightedScore

Make replacements

end if

Next access

end while

monitor if we access these replacement contender banks or not. If a bank is in replacement

contender list and gets accessed in current interval, we make a replacement to get that bank in

SSD. We check for certain �threshold� number of accesses to a bank, before making the replace-

ment. After a bank gets accessed more than certain threshold, we are more con�dent that the

replacement contender is actually being accessed in this interval so we replace least frequently

used SSD entry (bottom entry in the sorted list) with the contender. We also make sure that

we do not replace any contender with another contender to avoid other wasteful replacements.

The main operations of conservative interval LFU replacement is summarized in Algorithm 5.

4.4 Conservative History based Interval LFU Replacemen

We discussed two variations of LFU replacement policy to improve our performance and

reducing the number of replacements. History based approach tries to decide what should

be in SSD by analyzing past k intervals compared to a single interval to make more reliable

prediction. Conservative approach tries to limit the number of replacement by avoiding wasteful

replacement. History based conservative approach tries to use both of these variations to make

more reliable prediction as well as prevent wasteful replacements. The main operations of

conservative history based interval LFU replacement is summarized in Algorithm 6.

www.manaraa.com

21

Algorithm 5 Write Conservative Interval LFU Replacement

while 1 do

Read currentAccess

B = FindBank(CurrentLBA)

incr AccessCount for Bank[B]

if B is not in SSD then

Load bank B from HDD //miss

if B is a Contender then

if Bank[B][AccessCount] >= Threshold then

Replace bottom entry with B

end if

end if

else

Load bank B from SSD //hit

end if

if new interval then

Sort Bank[][] in descending order of AccessCount

Replacement Contender = Top (Bank)

end if

Next access

end while

Algorithm 6 Conservative History based Interval LFU Replacement

while 1 do

Read currentAccess

B = FindBank(CurrentLBA)

incr AccessCount for Bank[B]

if B is not in SSD then

Load bank B from HDD //miss

if B is a Contender then

if WeightedScore >= Threshold then

Replace bottom entry with B

end if

end if

else

Load bank B from SSD //hit

end if

if new interval then

= CalculateWeightedScore(B)

Sort Bank[][] in descending order of WeightedScore

Replacement Contender = Top (Bank)

end if

Next access

end while

www.manaraa.com

22

(a) % Improvement vs Threshold

(b) Replacements vs Threshold

Figure 4.1: Replacement Strategies Simulation Results-DisplayAdsPayLoad

www.manaraa.com

23

(c) PolicyE�ectiveness vs Threshold

Figure 4.1: (Continued)

Replacement Strategies Simulation Results-DisplayAdsPayLoad

Figure 4.2: Conservative LFU Policy-DisplayPayload

www.manaraa.com

24

Table 4.1: Replacement Strategies Simulation Results Table

Replacement
Strategy

DisplayAdsPayload

Threshold % Improvement Replacements
%improvement/
Replacements

LFU N/A 63.11 1871 0.0337

Conservative
LFU

20 89.21 250 0.3568

40 88.80 198 0.4485

60 88.59 177 0.5005

80 88.24 146 0.6044

100 88.06 128 0.6880

History LFU N/A 81.97 386 0.2124

Conservative
History LFU

20 92.76 431 0.2152

40 92.32 331 0.2789

60 91.51 283 0.3234

80 90.97 241 0.3775

100 90.60 222 0.4081

4.5 Replacement Strategies Simulation Results

All three replacement strategies are simulated on the same workloads used for spatial locality

analysis. We use a quality metric de�ned as

PolicyEffectiveness =
%imrovement

Replacements

For a given SSD size, we compare e�ectiveness of each policy. The table 4.1 shows results

for DisplayAdsPayload application for a one SSD size. We plot % improvement, number of

replacements and PolicyE�ectiveness in Figure 4.1. The plot shows that conservative LFU

scheme gives more improvement with lower replacements. For example, for a threshold of 80

conservative LFU has 12.8x lesser replacements and 15% larger improvement compared to LFU

replacement. In case of history based conservative LFU, the % improvement is 27% higher,

where as the replacements are 7.8x lesser. So PolicyE�ectiveness is higher for Conservative

LFU and History based conservative LFU.

www.manaraa.com

25

Figure 4.3: Conservative History based LFU Policy-DisplayPayload

Threshold Analysis

We analyze e�ect of threshold on PolicyE�ectiveness for DisplayAdsPayload application.

Figure 4.2 and 4.3 shows plot of PolicyE�ectiveness vs SSD Size. Plot shows that PolicyEf-

fectiveness is highest when threshold is highest for each SSD size. The reason behind, as the

threshold increases, it becomes tougher for a contender bank to replace a bank in SSD. This

reduces the number of replacements. As number of replacements decreases, PolicyE�ectiveness

increases.

The plot also shows that e�ect of di�erent threshold is much more for higher SSD size

compared to lower SSD size. For the higher SSD size, decrement in number of replacements as we

increase threshold is much lower. As replacements does not decrease much, PolicyE�ectiveness

increases more as % improvement increases. For example, for conservative LFU replacement,

replacements reduces by 369 as threshold increases from 20 to 100 for SSD size 40. But for SSD

size 80 replacements reduces by 122. Therefore e�ect of increasing threshold is more for higher

SSD size.

www.manaraa.com

26

Figure 4.4: Comparison of all four policies - DisplayAdsPayload

Figure 4.5: Comparison of all four policies - RadiusBackEndSQLServer

www.manaraa.com

27

Comparison

We compare all four policies for di�erent SSD sizes to see how does each policy improve

the performance as SSD size increases. Figure 4.4 and 4.5 shows plot of PolicyE�ectiveness vs

SSD size. DisplayAdsPayload application has lower locality and RadiusBackEndSQLServer has

good locality according to our analysis in Section 3.1. The plots shows that PolicyE�ectiveness

is much higher for RadiusBackEndSQLServer compared to DisplayAdsPayload. The plots also

shows that History LFU performs better than LFU replacement policy in all cases. Also,

conservative LFU and conservative history based LFU policies perform better than LFU and

history LFU policies.

www.manaraa.com

28

CHAPTER 5. SUMMARY AND CONCLUSION

With the emergence of SSD, hybrid drives that trade-o� disk latency with the cost are

gaining more importance. However, its not clear how much should be the proportion of SSD

and HDD in the disk. We carried out a spatial locality based analysis to show that while some

applications would be bene�ted in terms of improved disk access latency by <10% SSD, other

applications, for the same bene�t, would require >60% SSD.

On one hand, data in the SSD needs to be replaced at regular intervals to maintain its

utility, on the other hand, SSD has very limited life write cycles before it wears o�. To this

e�ect, we proposed four di�erent replacement policies to maximize the performance with min-

imal replacements. Our replacement policies demonstrate the trade-o� between performance

improvement and the number of replacements.

www.manaraa.com

29

BIBLIOGRAPHY

(1956). IBM 305 RAMAC. IBM Hardware Archives. 1

(2014). The Economics of Intelligent Hybrid Storage. An Enmotus White Paper. vi, 3

Badam, A. and Pai, V. S. (2011). Ssdalloc: Hybrid ssd/ram memory management made easy.

In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implemen-

tation, NSDI'11, pages 211�224, Berkeley, CA, USA. USENIX Association. 5

Kang, W.-H., Lee, S.-W., and Moon, B. (2012). Flash-based extended cache for higher through-

put and faster recovery. Proceedings of the VLDB Endowment, 5(11):1615�1626. 5

Lv, Y., Cui, B., Chen, X., and Li, J. (2013). Hotness-aware bu�er management for �ash-

based hybrid storage systems. In Proceedings of the 22nd ACM international conference on

Conference on information & knowledge management, pages 1631�1636. ACM. 5

Micheloni, R., Marelli, A., and Eshghi, K. (2013). Inside Solid State Drives (SSDs). Springer

Series in Advanced Microelectronics. Springer Netherlands. 2

No, J. (2012). Nand �ash memory-based hybrid �le system for high i/o performance. Journal

of Parallel and Distributed Computing, 72(12):1680�1695. 2, 4

Piramanayagam, S. and Chong, T. C. (2011). Developments in data storage: materials perspec-

tive. John Wiley & Sons. 1

Wood, R. (2009). Future hard disk drive systems. Journal of Magnetism and Magnetic Materials,

321(6):555 � 561. Current Perspectives: Perpendicular Recording. 1

	2014
	Hybrid drive design: an economics - workload based approach
	Joy Shukla
	Recommended Citation

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ALGORITHMS
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. INTRODUCTION
	2. RELATED WORK
	2.1 Our Approach

	3. DETERMINING SSD SIZE
	3.1 Spatial Locality Analysis
	3.2 Data Driven Design
	3.2.1 Gathering Data For The Analysis
	3.2.2 Analysis
	3.2.3 Spacial Locality Analysis Results

	4. REPLACEMENT STRATEGIES
	4.1 Interval Least Frequently Used (LFU) Replacement
	4.2 History based Interval LFU Replacement
	4.3 Conservative Interval LFU Replacement
	4.4 Conservative History based Interval LFU Replacemen
	4.5 Replacement Strategies Simulation Results

	5. SUMMARY AND CONCLUSION
	BIBLIOGRAPHY

